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Abstract

We consider the rewiring of a bipartite graph using a mixture of random and
preferential attachment. The full mean field equations for the degree distribution
and its generating function are given. The exact solution of these equations for all
finite parameter values at any time is found in terms of standard functions. It is
demonstrated that these solutions are an excellent fit to numerical simulations of
the model. We discuss the relationship between our model and several others in
the literature including examples of Urn, Backgammon, and Balls-in-Boxes models,
the Watts and Strogatz rewiring problem and some models of zero range processes.
Our model is also equivalent to those used in various applications including cultural
transmission, family name and gene frequencies, glasses, and wealth distributions.
Finally some Voter models and an example of a Minority game also show features
described by our model.

1 Introduction

One of the the most important classes of complex network models are those with a
constant number of edges which evolve by rewiring those edges. The classic example of
Watts and Strogatz [1] is of this type and such models are often studied in their own
right [2, 3, 4, 5, 6, 7]. Network rewiring is also related to to some multi-Urn models
[8, 9, 10, 11] which include what are termed Backgammon or Balls-in-Boxes models [12]
used for glasses [13, 14], simplicial gravity [15] and wealth distributions [16]. Models of the
zero range process [17, 18, 19] are also closely linked. Since most practical systems cannot
grow indefinitely networks of constant size have many applications: the transmission of
cultural artifacts such as pottery designs, dog breed and baby name popularity [20, 21,
22, 23, 24, 25], the distribution of family names in constant populations [26], the diversity
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of genes [27, 28]. Aspects of the Voter model [29, 30], as used to describe the competition
between languages [31], and the popularity of minority game strategies [32] may also be
cast in terms of network rewiring.

Analytic results for network models are limited. A typical approach starts from the
master equations for the evolution of the degree distribution, these are given in a mean
field approximation in which the quantities are the average values of many possible re-
alisations. Luckily in most models, and even in some real-world applications, the results
from mean field equations often agree extremely well with numerical simulations of the
model.

Despite the simplifications brought by the mean field approximation, the equations
remain difficult to solve and it is normal to study the large graph and long time limit
e.g. see [33, 34]. For instance the finite size/time corrections to growing graphs using
linear degree attachment probabilities are complicated and known only as an asymptotic
expansion, for example see [35, 36]. In fact one of the most tractable examples remains
the Erdős-Réyni random graph which can be seen as the long time limit of the Watts
and Strogatz rewiring model [1].

What we show in this paper is that the mean field equations for the degree distribution
of non-growing rewiring models with linear rewiring probabilities can be solved exactly

for any time. This goes beyond the results found in the literature (typically exact only
for infinitely large systems in equilibrium) and extends the initial work on exact results
in such models at equilibrium [37] and the preliminary non-equilibrium results of [38].

We start by setting up the model and the mean field master equations for the degree
distribution in the next Section. We solve these in terms of the generating function
in Section 3 and from this we consider the degree distribution in Section 4 and then
its moments in Section 5. All this is done in terms of our simple network rewiring
model but in Section 6 we consider the relation between this model and a variety of
other abstract models (with and without explicit networks) and to various real world
examples. Finally we summarise our conclusions and add some observations on how such
preferential attachment may arise naturally and the scaling properties of our model.

2 The Model

We will focus on a generic rewiring problem, which we shall describe in terms of a bipartite
graph of E ‘individual’ vertices, each having one edge fixed to any one of N ‘artifact’
vertices, as shown in Fig. 1. Our naming of the vertices reflects our previous work and
one possible application (cultural transmission) but apart from the names we will keep
our presentation abstract until Section 6.

Each individual vertex is always connected to exactly one edge while the other end of
each edge may be connected to any available artifact. The network changes by rewiring
the artifact end of these edges and we will focus on the degree distribution of the artifact
vertices at any one time, n(k, t) and its probability distribution p(k, t) = n(k, t)/N where
k is the degree of an artifact vertex.

To make progress we make further simplifying assumptions. First we will assume
that the population of individuals is absolutely constant so E is fixed and finite. Almost
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Figure 1: The bipartite graph has E ‘individual’ vertices, each with one edge. The other
end of the edge is connected to one of N ‘artifact’ vertices. If the degree of an artifact
vertex is k then this artifact has been ‘chosen’ by k distinct individuals. At each time
step a single rewiring of the artifact end of one edge occurs. An individual is chosen
(number 3 here) with probability ΠR which gives us the departure artifact (here D). At
the same time the arrival artifact is chosen with probability ΠA (here labelled A). After
both choices have been made the rewiring is performed (here individual 3 switches its
edge from artifact D to A).

all other comparable work uses a large E approximation. We will also assume that the
artifact choices available are fixed to be N so the average degree of an artifact vertex is
〈k〉 = E/N . An important limit is where we take N to infinity so 〈k〉 → 0.

We will then assume that at each time step one edge is rewired1. Continuous time
evolution is considered in Section 6.1. At each time step2 we first make two choices and
only then do we change the network.

First an individual is chosen in some stochastic manner. This individual is attached
by one edge to an artifact, the departure artifact. It is the artifact end of this edge which
is to be changed. Thus we are effectively removing an edge from the departure artifact
chosen with probability3 ΠR. The edge chosen is going to be rewired and attached to
another artifact vertex, the arrival artifact, picked with probability ΠA. Thus the master

1Alternatively the order in which each individual changes their choice could be made in a more
systematic way, either in a fixed order or a random order changed once each individual has been rewired
once. They could even be changes at the same time, the model used in [21, 22, 23, 24]. We have tried
these variations numerically and they appear to make little difference to the equilibrium results.

2The physical time T of each event t ∈ Z should be monotonically increasing T (t + 1) > T (t) but
otherwise it can be arbitrary. This relationship should be derived from the actual frequency of changes
in the problem of interest.

3Alternatively we also have models where the process chooses an edge or artifact directly, with the
probability ΠR. The distinction is immaterial for the degree distribution of the artifacts so we shall take
these alternatives for granted.
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equation for the degree distribution in the mean field approximation is

n(k, t+ 1) − n(k, t)

= n(k + 1, t)ΠR(k + 1, t) (1 − ΠA(k + 1, t))

−n(k, t)ΠR(k, t) (1 − ΠA(k, t)) − n(k, t)ΠA(k, t) (1 − ΠR(k, t))

+n(k − 1, t)ΠA(k − 1, t) (1 − ΠR(k − 1, t)) , (E ≥ k ≥ 0) . (1)

For notational simplicity we choose to set n(k) = ΠR(k) = ΠA(k) = 0 for the unphysical
values k = −1 and k = (E + 1). In this way the equation gives the correct behaviour at
the physical boundary values of k = 0 and k = E.

Note that there is a chance (ΠRΠA) that we will choose the same artifact vertex for
both attachment and removal. As this produces no change in the network we must ensure
that such events do not contribute to changes in the degree distribution. This is the role
of the factors of (1−Π). Such terms are not normally found in the master equations for
network rewiring [3, 5, 6, 7, 8, 9, 11]. It is crucial that we do this otherwise we will not
have the correct behaviour at the boundaries k = 0 and k = E.

Such (1−Π) corrections will often be negligible especially for large E systems where
the probabilities Π(k) for any individual value of degree k may be tiny4. However there
are important configurations in this model and in related models where even for large
systems in equilibrium Π(k) are not small for some values of k. This will be discussed in
Section 6.1 after we have obtained the explicit solution.

The master equation (1) is a mean-field approximation for the evolution through our
stochastic dynamics of the average value of the function n(k). The errors come if

〈n(k, t)f(k, t)〉 − 〈n(k, t)〉〈f(k, t)〉 6= 0 (2)

where f are various combinations of ΠR and ΠA. For instance if we have a model with
attachment or removal probabilities of the form (kβ/zβ) then the problem lies with the
normalisation as in general

〈n(k, t)
kβ

zβ(t)
〉 6= kβ 〈n(k, t)〉

〈zβ(t)〉
. (3)

In many practical cases the fluctuations are small and the corrections to the mean-
field results are often found to be small. For this reason the equations can be a good
approximation even if the number of vertices or edges fluctuate provided their average
values are constant and the variations are small.

However, there are two special cases for (3) the mean field approximation is exact,
namely when β = 0 or β = 1. Only in these cases are the normalisations of probabilities
constants of the motion, N and E respectively. The most general choice for ΠR and ΠA

satisfying these criteria is therefore

ΠR =
k

E
, ΠA = pr

1

N
+ pp

k

E
, pp + pr = 1 (E ≤ k ≤ 0) . (4)

This form for ΠA means that an edge can be reattached in two ways. With probability pp,
preferential attachment is used and the artifacts are chosen with a likelihood proportional

4These are the “safe situations” of large graphs discussed in Chapter 4 of [3].
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to their degree. Alternatively with probability pr a random5 artifact is chosen. Choosing
a random edge for rewiring corresponds to the use of ‘preferential removal’ alone.

There are other good reasons for choosing these forms for the probability apart from
the fact the master equation is then exact. Mathematically, these simple forms enable
us to find a complete non-equilibrium solution. In terms of practical applications, one
may understand these special forms as emerging naturally from a random walk process
[36, 43]. We will also note the scaling properties of their solutions in Section 7.

3 The Generating Function

A useful way to investigate the degree distribution n(k, t) is to encode it with a generating
function G(z, t)

G(z, t) :=

E
∑

k=0

zkn(k, t) . (5)

Below we will exploit the fact that G is always a polynomial in z of order no greater than
E. The mean field equations (1) can then be re-written as a differential equation for the
generating function,

b(1 + a− c)

(1 − z)
[G(z, t+ 1) −G(z, t)]

= z(1 − z)G′′(z, t) + [c− (a+ b+ 1)z]G′(z, t) − abG(z, t) , (6)

where the differentials G′′ and G′ are with double and single derivatives with respect to
z. The constants a, b and c are given by,

a =
pr

pp

〈k〉 , b = −E , c = 1 +
pr

pp

〈k〉 −
E

pp

. (7)

The equation for n(k, t) is linear—it is completely equivalent to a Markov process
in an E + 1-dimensional space in which the vector (n(0, t), n(1, t) . . . , n(E, t)) lives [38].
Therefore we can define E + 1 eigenvectors ω(m)(k) associated with an eigenvalue λm

(m = 0, 1, 2, . . . E), which we order such that λm ≥ λm+1. Furthermore, the properties of
the Markov process guarantee that 1 ≥ |λm| with at least λ0 = 1.

We can now break the generating function into E + 1 components with the time
dependence factorised

G(z, t) =

E
∑

m=0

cm(λm)tG(m)(z) , G(m)(z) :=

E
∑

k=0

zkω(m)(k) (8)

where the coefficients cm depend on the initial conditions n(k, t = 0). Again the gener-
ating functions for the eigenvectors, G(m)(z), are polynomials of degree no larger than

5In this paper ‘random’ without further qualification indicates that a uniform distribution is used to
draw from the set implicit from the context.
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E. Substituting this form into (6) gives a a time-independent differential equation for
G(m)(z), the generating function of the m-th eigenvector:

z(1 − z)G(m)′′(z) + [c− (a + b+ 1)z]G(m)′(z)

−

[

ab−
(λm − 1)

1 − z
b(c− a− 1)

]

G(m)(z) = 0 . (9)

This can be solved most easily by writing G as a polynomial in (1 − z). Having the
correct form for the master equation and therefore the correct behaviour at the boundaries
ensures that this gives a finite order polynomial. These may be summarised in terms of
the Hypergeometric function F = 2F1 to be 6

G(m)(z) = (1 − z)mF (a+m, b+m; c; z) (10)

= (1 − z)m

E−m
∑

l=0

Γ(a +m+ l)Γ(b+m+ l)Γ(c)

Γ(a+m)Γ(b+m)Γ(c+ l)(l!)
zl (11)

with corresponding eigenvalues,

λm = 1 −m(m− 1)
pp

E2
−m

pr

E
, 0 ≤ m ≤ E . (12)

An expression for the entries of the eigenvectors ω(m)(k) may be derived from the coef-
ficients of zk in (11) which can be given in terms of the Hypergeometric function 3F2,
though it is not very illuminating and merely assists in explicit evaluations:

ω(m)(k) = (−1)m Γ(k + 1)

Γ(k + 1 −m)

Γ(c+ k)

Γ(c+ k −m)

Γ(a)

Γ(a +m)

Γ(b)

Γ(b+m)
×

3F2 (−m, a + k, b+ k; k + 1 −m, k + c−m; 1 − z)|z=0 ω
(0)(k) (13)

where

ω(0)(k) =
Γ(a+ k)

Γ(a)

Γ(b+ k)

Γ(b)

Γ(c)

Γ(c+ k)
. (14)

In the special case of pr = 1, the degree distribution is that of the Watts and Strogatz
model [1] (see Section 6 below). The generating function then reduces to

G(m)(z) =
1

(1 −N−1)E−m
(1 − z)m((1 −N−1) +N−1z)E−m . (15)

More usefully we note for later use that the eigenvalues satisfy7

1 = λ0 > λ1 > . . . λm > λm+1 > . . . λE =
pp

E
> 0, (0 < pr ≤ 1) (16)

λ1 = 1 −
pr

E
, λ2 = 1 −

2pr

E
−

2pp

E2
. (17)

6We have chosen to normalise the eigenfunctions such that ω(m)(k = 0) = 1. The physical normali-
sation needed in the problem is contained in the cm coefficients of (8).

7The only case of eigenvalue crossing occurs at pr = 0 when there is degeneracy in the two largest
eigenvalues with 1 = λ0 = λ1.

6



The first consequence of these solutions is that the system evolves to a unique equilibrium
solution given by [37]

G(z) := lim
t→∞

G(z, t) = c0F (a, b; c; z) . (18)

The time scale for the decay of each of the eigenfunctions is given by

τm = −1/ ln(λm) . (19)

4 The Degree Distribution

The degree distribution n(k, t) at any time is given as the coefficients of zk in the ex-
pression for the generating function G(z, t) of (8) and this in turn depends on the initial
conditions. The equilibrium degree distribution derived from G(z) of (18) which from (8)
is based only on the zero-th eigenfunction ω(0) (the m = 0 case of (11)). In particular
the k = 0 case shows that c0 = n(0) = limt→∞ n(k = 0, t) and so we have

n(k) := lim
t→∞

n(k, t) =
1

k!

dkG(z)

dzk

∣

∣

∣

∣

z=0

=
n(0)

Γ(k + 1)

Γ(a + k)

Γ(a)

Γ(b+ k)

Γ(b)

Γ(c)

Γ(c+ k)
. (20)

The total number of artifacts is given simply by the generating function at z = 1 so

N = c0G(z = 1) = n(0)F (a, b; c; 1) . (21)

This gives us the equilibrium artifact degree probability distribution function p(k) =
n(k)/N as

p(k) = A
Γ

(

k + pr

pp

〈k〉
)

Γ (k + 1)

Γ
(

E
pp

− pr

pp

〈k〉 − k
)

Γ (E + 1 − k)
, (22)

A :=
Γ

(

pr

pp

E
)

Γ (E + 1)

Γ
(

pr

pp

(E − 〈k〉)
)

Γ
(

pr

pp

〈k〉
)

Γ
(

E
pp

) , (23)

where we have chosen to write the expression in terms of Γ functions of positive arguments
and in terms of the original parameters. Two useful values are the degree probability
distribution for zero degree and maximum degree k = E. The former provides a measure
of the number of unused artifacts and thus another measure of the uniformity of the
system and the latter will be discussed in detail below. These satisfy simple formulae

p(0) =
Γ( pr

pp

E)

Γ( E
pp

)

Γ( E
pp

− pr

pp

〈k〉)

Γ( pr

pp

E − pr

pp

〈k〉)
(24)

p(E) =
Γ( pr

pp

E)

Γ( E
pp

)

Γ(E + pr

pp

〈k〉)

Γ( pr

pp

〈k〉)
. (25)

The results for p(0, t) are plotted against exemplary data in Fig. 2.
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Figure 2: Plots of p(0) as a function of re-wirings and the fractional difference between
the simulation and mean field results for N = E = 100 and pr = 0.1 (crosses), pr = 0.04
(circles), pr = 0.02 (stars) and pr = 0.01 (squares). Simulations started with n(k = 1) =
E and zero otherwise. Averaged over 106 runs. The solid lines are the results from the
mean field calculations.

4.1 Large Degree Equilibrium Behaviour

The solution for p(k) has two significant parts. The first k dependent ratio of Gamma
functions in (22) for k ≫ 1 and pr ≈ 0 behaves as

R1 =
Γ(k + pr

pp

〈k〉)

Γ(k + 1)
∝ k−γ

(

1 +O(k−1,
pr〈k〉

ppk
)

)

, γ = 1 −
pr

pp

〈k〉 ≤ 1 . (26)

For pr = 0 or 〈k〉 = 0 (which includes when N → ∞) this term gives us an exact
inverse k power law for all degree k from this term. Another special case corresponds
to an attachment probability of ΠA ∝ (k + 1) which is often found in the literature, for
instance [7, 10, 11]. This ratio R1 is then exactly one for all k so γ = 0. In general the
power is usually close but always less than one.

However the (1 − ΠA) and (1 − ΠR) terms in (1) have led to the second k-dependent
ratio of Gamma functions in (22). If E ≫ k this gives an exponential cutoff

R2 =
Γ

(

E
pp

− pr

pp

〈k〉 − k
)

Γ(E + 1 − k)
∝ exp{−ζk}(1 +O(

k

E
,
〈k〉

E
)), (27)

ζ = − ln (pp) (28)

≈ pr if pr ≪ 1, 〈k〉 ≪ E . (29)

Within these approximations, this may be expressed in an equivalent manner which is
some times seen in the literature (e.g. [28, 24, 23])

R2 =
Γ

(

E
pp

− pr

pp

〈k〉 − k
)

Γ(E + 1 − k)
∝

(

1 −
k

E

)Eζ̄

(1 +O(
k

E
)) (30)

ζ̄ =
pr

pp

(

1 −
1

N

)

−
1

E
≈ pr . (31)
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While not strictly valid at k ≈ E this second form indicates that there is a change of
behaviour for large degree if ζ̄ < 0. In such a case the numerator of this second k-
dependent ratio of Gamma functions becomes very large for k = E and we see directly
that this happens if pr ≪ p♯, where R2 = 1 (ζ̄ = 0) at p♯:

p♯ =
1

E + 1 − 〈k〉
≈

1

E
(1 +O(〈k〉E−1)) . (32)

At pr = p♯ we are closest to a pure power law with a power γ = γ♯ = 1 − (2N)−1.
For the special case where N → ∞ so 〈k〉 → 0 we get a perfect inverse power law at
pr = (1 + E)−1.

As pr drops below this critical value, a spike emerges at k = E from this second
k-dependent ratio R2 which comes to dominate the degree distribution at pr → 0. The
point where the distribution has become flat at the upper boundary, so n(E) = n(E− 1)
defines an alternative critical random attachment probability p∗ at

p∗ =
E − 1

E2 + E(1 − 〈k〉) − 1 − 〈k〉
, (33)

Ep∗ ≈ 1 +
(〈k〉 − 2)

E
. (34)

Either way when pr . 1/E the degree distribution will show a spike at k = E.
Overall we see two distinct types of distribution. For large random attachment rates,

Epr & 1, we get a simple inverse power with an exponential cutoff

n(k) ∝ (k)−γ exp{−ζk} , pr &
1

E
. (35)

This behaviour is often noted in the literature [5, 27, 23, 24, 6, 7, 17, 18] and the formulae
given there for the power γ and cutoff ζ or ζ̄ are consistent with the exact formulae given
here given the various approximations used elsewhere. Note that in any one practical
example it will be impossible to distinguish the power γ derived from the data from a
value of one. This is because to have a reasonable section of power law behaviour we
require 1 ≪ ζ but this implies that pr is small and so (γ − 1) ≪ 〈k〉. The power drifts
away from one as we raise the random attachment rate pr towards one but only at the
expense of the exponential regime starting at a lower and lower degree. Only when the
power is very close to one can we get enough of a power law to be significant.

However as pr is lowered towards zero we get a change of behaviour in the exponential
tail around prE ≈ 1. First we find the exponential cutoff ζ−1 moves to larger and
larger values, eventually becoming bigger than E. For pr slightly below p♯, that is for
pr > p∗ ≈ E−1, the tail starts to rise. For prE ≪ 1, i.e. if there has been no random
artifact chosen after most edges have been rewired once, then we will almost certainly
find one artifact linked to most of the individuals, n(E) ≈ 1.

This behaviour for Epr ≪ 1 has been noted in some of the literature where it is known
as condensation [12, 14, 15, 16, 17, 18] or, in the older population genetics literature, it is
called fixation. It mirrors similar behaviour known for growing networks when non-linear
attachment probabilities or vertex fitness are used, for example see [33, 40].
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4.2 Limiting Values of pr in Equilibrium

The pr = 0 limit offers some simplifications as well as being the only value in the con-
densation phase. The condensation is clear from the expression for p(k) of (22) as the
denominator is infinite if (pr/pp)E(1 − N−1) = 0, i.e. either the trivial example of one
artifact N = 1 or in this pure preferential attachment limit pp = 1, pr = 0. For the
latter p(k) is therefore zero for all values of k except k = 0 or k = E where the infinity
cancelled by the same term in the numerator. For instance we find that8 for small pr the
equilibrium distribution has the form

p(0) ≈

(

1 −
1

N

)

(1 − pr〈k〉[ψ(E) − ψ(1)]) +O((pr)
2) (36)

p(k) ≈ pr

〈k〉(E − 〈k〉)

k(E − k)
+O(p2

r), 0 < k < E (37)

p(E) ≈
1

N
(1 − pr(E − 〈k〉)[ψ(E) − ψ(1)]) +O((pr)

2) (38)

so only at pr = 0 do we get condensation for any E. This represents a true phase transition
in the large system (E → ∞, thermodynamic) limit between the gamma distribution (35)
for pr > 0 and the condensation p(k) = δk,E at pr = 0.

At the other extreme, we have the limit of pure random artifact selection pr = 1. In
this limit the model captures exactly the degree distribution of the original Watts and
Strogatz model [1]. In this case for any E and 〈k〉 the solution for p(k) (22) reduces to
a binomial distribution with a probability (1/N) of any one edge connecting to a given
artifact vertex, i.e. we have the expected Erdős-Réyni random graph in the long time
limit.

4.3 Time dependence of the Degree Distribution

So far we have looked at the equilibrium behaviour but we have a complete solution
for the degree distribution for all times and any value of the parameters through our
eigenfunctions (13) and eigenvalues (12). Alternatively for small values of E it may
be more convenient to cast this as a matrix problem [38]. We have used the latter to
predict the degree distribution for any time for a range of pr values either side of and
approximately equal to the critical value p∗ in Fig.s 3, 4 and 5. These (and other figures
below) shows that the degree distribution evolves on time scales τ2 set by the eigenvalue
two whatever pr we use (why it is not τ1 is explained below). Again the exact mean field
results fit the averaged values from a simulation extremely well.

8In this pr = 0 limit we have degeneracy between eigenfunctions number zero and one. However we
will see below that eigenfunction one ω(1) does not contribute to any physical solution so there is no
ambiguity about our solution in this case.
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Figure 3: Plots of p(k) and the fractional deviation between the simulation (data points)
and exact mean field results (lines) for E = N = 100 and pr = 0.1 after evolving for
t ≈ τ2 (crosses), t ≈ 2τ2 (circles), t ≈ 3τ2 (stars) and to equilibrium (squares). The
solid lines are the relevant mean field results plotted for the same times. Started with
n(k = 1) = E and zero otherwise and simulation results averaged over 105 runs.

5 The Moments of the Degree Distribution

The properties of the hypergeometric function mean it is easy to calculate derivatives of
the generating function at z = 1 at any time as we have

g(m)
n :=

dnG(m)(z)

dzn

∣

∣

∣

∣

z=1

(39)

= (−1)mg
(0)
0

Γ(n+ 1)

Γ(n+ 1 −m)

Γ(a+ n)

Γ(a+m)

Γ(b+ n)

Γ(b+m)

×
Γ(c− n−m− a− b)

Γ(c− a− b)

Γ(c− a)

Γ(c− a−m)

Γ(c− b)

Γ(c− b−m)
(m ≤ n) (40)

with g
(m)
n = 0 if m > n. This then suggests that rather than work in terms of the higher

moments 〈kn〉, we use the probabilities Fn where9

Fn(t) :=
Γ(E + 1 − n)

Γ(E + 1)

dnG(z, t)

dzn

∣

∣

∣

∣

z=1

=

E
∑

k=0

k

E

(k − 1)

(E − 1)
. . .

(k − n+ 1)

(E − n+ 1)
n(k, t) . (41)

The function Fn is the probability that if we choose n distinct edges, they will all share the
same artifact. The r-th moment 〈kr〉 can be calculated if given all the Fn for n ≤ r. The
Fn achieve their largest value only when we have a condensation, p(k) = (N−1)δk,0+δk,E

where Fn = 1 for all n ≥ 2. That is we have a perfectly homogeneous population (all the
individuals are connected to the same artifact). The lowest possible value of Fn depends
on the other parameters. If we have E ≤ N then when all artifacts have at most one
edge attached then Fn = 0 for all n, as we can see in Fig. 6 at the initial time. The
evolution causes a drift towards a more heterogeneous distribution. The same Figure

9This means that the generating function may be written as G(z) =
∑

E

n=0(z − 1)n
(

E

n

)

Fn, a form
useful when solving the differential equation (9).
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Figure 4: Plots of p(k) and the fractional deviation between the simulation (data points)
and exact mean field results (lines) for E = N = 100 and pr = 0.01 after evolving for
t ≈ τ2 (crosses), t ≈ 2τ2 (circles), t ≈ 3τ2 (stars) and to equilibrium (squares). The
solid lines are the relevant mean field results plotted for the same times. Started with
n(k = 1) = E and zero otherwise and simulation results averaged over 105 runs.

also shows how the exact mean field results match results from simulations extremely
well. Mathematically it is clear from the result (11) that the Fn only has contributions
from the first n + 1 eigenfunctions, i.e. from G(m) for m ≤ n.

In equilibrium only eigenfunction zero contributes and we have a simple result

lim
t→∞

Fn(t) := Fn = N
Γ( pr

pp

〈k〉 + n)Γ( pr

pp

E)

Γ( pr

pp

〈k〉)Γ( pr

pp

E + n)
. (42)

5.1 Normalisation N

The zero-th moment sets the overall normalisation of the degree distribution n(k, t). This
is nothing but the total number of artifact nodes N and for any time t we find it is equal
to

N = G(z = 1, t) =

E
∑

m=0

cm(λm)tg
(m)
0 = c0F (a, b; c; 1) . (43)

This result is time independent because it comes only from the zero-th eigenvector, the
only time independent part of the solution. Thus our solution is consistent with a key
property in this model, namely the constant number of artifacts N . This then fixes the
amplitude of the zero-th eigenfunction in (8) to be

c0 =
N

g
(0)
0

. (44)
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Figure 5: Plots of p(k) and the fractional deviation between the simulation (data points)
and exact mean field results (lines) for E = N = 100 and pr = 0.001 after evolving for
t ≈ τ2 (crosses), t ≈ 2τ2 (circles), t ≈ 3τ2 (stars) and to equilibrium (squares). The
solid lines are the relevant mean field results plotted for the same times. Started with
n(k = 1) = E and zero otherwise and simulation results averaged over 105 runs.
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Figure 6: Plots of various Fn(t) (points) with their exact mean field predictions (lines).
From top to bottom we have: F2(t) (crosses), F3(t) (circles), F4(t) (stars). For E = N =
100, pr = 0.01 and data points are the average of 105 runs of a simulation.

5.2 Average Degree

The first derivative of the generating function gives the number of edges

E =
d

dz
G(z, t)

∣

∣

∣

∣

z=1

(45)

=
E

∑

m=0

cm(λm)tg
(m)
1 =

c0
N
g

(0)
1 +

c1
N

(λ1)
tg

(1)
1 . (46)

Only eigenfunctions zero and one contribute but the latter leads to time-dependence. On
the other hand we also have a fixed number of edges in this model as it is one of our
input parameters. The only solution is therefore c1 = 0. Thus for any physical problem
there is no contribution from the eigenfunction number one.

This equation then appears to over constrain our solution as c0 is already known from
the normalisation (44) and all other quantities are fixed. However, we find that using
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Figure 7: Plots of the Homogeneity Factor F2(t) and the fractional difference between
the simulation (data points) and exact mean field results (lines) for N = E = 100 and
different pr. From bottom to top: pr = 0.1 (crosses), pr = 0.04 (circles), pr = 0.02
(stars) and pr = 0.01 (squares). Initial configuration is n(k = 1) = E and zero otherwise.
Simulation data is averaged over 104 runs. The results are in good agreement with the
analytic result equation (52).

standard properties of hypergeometric functions and the normalisation from (43) that
the solution already satisfies (45) and again everything is consistent.

5.3 Homogeneity Measures Fn and Initial Conditions

The next derivative of the generating function contains the second moment but it is
preferable to work with our related function F2 – the probability that two distinct edges
chosen at random are connected to the same artifact. Similar measures of the homogeneity
of the artifact choices have been used before such as F = 〈(k2/E2)〉 but this is easily
calculated from our F2 measure. We find that

F2(t) :=
E

∑

k=0

k(k − 1)

E(E − 1)
n(k, t) (47)

=
1

E(E − 1)

(

c0g
(0)
2 + c2(λ2)

tg
(2)
2

)

(48)

Now there is time dependence but only coming from eigenfunction number two. This
function is readily evaluated using (40), the coefficient c2 fixed upon specification of the
initial conditions. This formula fits the results extremely well as Fig. 7 shows.

One of the advantages of the Fn measures is that they provide a systematic and
practical way of fixing the amplitudes of each eigenfunction, the cm coefficients of (8),
from the initial conditions. From the definition (41) we can express Fn in terms of the n-th
derivatives of the generating functions associated with the m-th eigenfunction evaluated
at z = 1, i.e. g

(m)
n of (39).

Γ(E + 1 − n)

Γ(E + 1)

n
∑

m=0

cmg
(m)
n = Fn(t = 0). (49)
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However only the first n eigenfunctions contribute so we can use an iterative scheme
to find the first few coefficients quickly. These are sufficient to provide an excellent
approximation for the degree distribution for most times.

For example consider the case of uniform initial conditions, such that E ≤ N and
each artifact is connected to at most one edge, then we have that Fn = 0 for n ≥ 2. This
corresponds to the choice of initial conditions used in obtaining the numerical results in
Figures 2 though 5. So for these initial conditions the following condition holds,

n
∑

m=0

cmg
(m)
n = 0, n ≥ 2. (50)

We have already seen that the N parameter fixes c0 in (44) while the first moment or
equivalently E gives c1 = 0. So starting with n = 2 we have

c2 = −c0
g

(0)
2

g
(2)
2

. (51)

The exact time dependence of the second Homogeneity function is

F2(t) = (1 − λt
2)F2(∞)

= (1 − λt
2)
pp + pr〈k〉

pp + prE
(52)

Comparisons to numerical results are plotted in Fig. 7.
Another particularly convenient choice of initial conditions is to attach each individual

vertex to the same artifact vertex so that n(k = E) = 1, n(k = 0) = N − 1 and zero
otherwise. Now Fn(0) = 1 and the condition (49) becomes

n
∑

m=0

cmg
(m)
n =

Γ(E + 1)

Γ(E + 1 − n)
. (53)

Note, we have put no restriction on the total number of individual vertices, E. For the
simplest case n = 2 we are led to another simple formula,

F2(t) =
(

1 − λt
2

)

(

pp + pr〈k〉

pp + prE
− 1

)

+ 1. (54)

While the exact degree distribution requires knowledge of all the eigenfunctions, the
low n eigenfunctions still provide a suitable approximation for most time. Fig.s 8 and
9 illustrate this, showing the contributions to the degree distribution from successive
eigenvectors for the two initial conditions discussed above.
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6 Discussion of other Models

The bipartite network of Fig.1 represents relationships at the core of many models in
the literature, some of which are not usually expressed in terms of networks. While the
models considered elsewhere often have additional elements compared with our simple
model of Sec. 2, those models often contain special cases where the degree distributions
for any time will be given by our exact result. The aim of this section is to indicate
the relationship between our model and those found elsewhere. Only some of these
connections have been made before and then only in some of the literature. We will start
by considering some generalisations of our simple model as this will then help us to make
comparisons with previous work.

6.1 Generalisations of our bipartite model

Many related models work in continuous time so that the number of rewiring events
which have occurred corresponds to our discrete time variable. However it is easy to
recast our simple model as a continuous time process so that n(k, t+ 1) − n(k, t) on the
left hand side of our master equation (1) becomes dn(k, t)/dt with the ΠR and ΠA being
interpreted as rates. This case is just as easy to solve as we replace the form used before
for our degree distribution and generating function (5) by

n(k, t) =

E
∑

m=0

cmω
(m)(k) exp{−λ̄mt} , λ̄m = 1 − λm . (55)

The eigenfunctions ω(m)(k) and the associated generating functions G(m) are exactly as
before, the new eigenvalues λ̄m have a simple relationship to our original λm and the form
of the time dependence is altered. Thus our exact solutions may be applied to discrete
or continuous time.

Another obvious generalisation of our model is to alter the form of the attachment
and removal probabilities ΠR and ΠA (4). Suppose

ΠR(k) = qp
k

E
+ qa

(1 − δk,0)

Na(t)
(56)

ΠA(k) = pp

k

E
+ pa

(1 − δk,0)

Na(t)
+ pr

1

N
, (57)

with qp +qa = 1 and pp+pa+pr = 1. We have added an extra process to our model where
with probability pa (qa) we can attach (remove) an edge from a random artifact chosen
uniformly from those which have at least one edge. The number of such active artifacts,
those where k > 0, is denoted Na(t) and this is time-dependent. However the master
equation (1) will no longer be exact because Na varies from configuration to configuration
so averages of ratios of kmn(k) and Na will not factorise into the ratio of their averages
(2). The time dependence of Na(t) also makes the non-equilibrium solutions of the master
equation hard to find though the equilibrium solution can be found as before [37]. For
instance the slope of the power law section in the non-condensed phase is now

γ = 1 −

(

pr

pp

+
pa

pp

−
qa
qp

)

〈k〉 (58)
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and it can now be greater than one. In terms of the condensed phase, this now occurs
when pp > qp which means that there is now a range of parameter values which lead to
this phase for large networks.

Another obvious generalisation is to have terms in ΠA or ΠR proportional to general
powers of the degree (kβ/zβ) or powers of general functions (a+bk)β. As noted in Section
2 this means that the master equation (1) is then only an approximation though in many
cases it will be a good one.

An important aspect of our model is that we have events where an edge is rewired
back to the same artifact so that the configuration does not change. We had to include
the (1 − Π) factors to account for this correctly. If we wish we can exclude these events
which corresponds to choosing an attachment probability of the form

ΠA(d, a) =

[

p̃r

1

(N − 1)
+ p̃p

ka

E − kd

]

(1 − δd,a), p̃p + p̃r = 1 (59)

where we are removing an edge from artifact labelled d (the departure artifact) and
adding it to an artifact labelled a (the arrival artifact). The (1−Π) factors in the master
equation (1) are now always one and can be dropped, giving the master equation the
form often seen in the literature (e.g. in [8, 9, 3, 7, 11, 5, 6]). However the preferential
attachment term p̃p of the attachment probability ΠA now has a configuration dependent
normalisation. The mean-field master equation is now an approximation for all p̃p > 0
and it is hard to solve it for arbitrary times. In many cases the fluctuations will be small
and the mean field will be a good approximation. Further if the number of edges attached
to any one artifact is small (tends to zero in the large E limit) then the difference between
our model and one excluding a = d events will be small [3]. Unfortunately, this will not be
true in the interesting case where we have a condensation since for some artifact vertices
ka/E will be significant, finite even in the large E limit. We would then expect differences
between processes based on (4) and (59).

Ultimately we could make the attachment or removal rates depend on the individual
nature of each vertex, e.g. make the probabilities pr and pp vary with artifact vertices.
This could mimic ‘fitness’ where some artifacts are intrinsically more likely to attract
edges.

One realistic way that artifact fitness could emerge is through the addition of an
Artifact graph. That is we could add a second network which connects artifacts to
artifacts and this could be used in choosing how the bipartite graph is rewired. For
instance, suppose we have chosen the edge we are going to rewire, so that we know the
departure artifact. We could choose the arrival artifact by making a random walk on the
artifact graph starting from the departure artifact [36, 43]. In this way the artifacts with
high degree in the artifact graph would be preferred (even for a walk of one step) and
a natural fitness assignment for artifacts has emerged. Alternatively, we could view this
Artifact graph as a way of encoding some distance metric on the artifact space. That
is when choosing a random artifact, a pr event, it may be that a small variation in the
artifact, as defined by some metric, is more likely than a large one. Our simple model is
equivalent to having a complete graph with tadpoles for the Artifact graph (the adjacency
matrix is one for all entries) which we use for the random choice (pr) events. The variation
mentioned above, where reconnection to the same artifact is excluded, corresponds to a

18



complete Artifact graph with no tadpoles.
At the moment, our preferential attachment process, pp, has been put in by hand.

However this can emerge naturally if we add an Individual graph, one which just connects
the individual vertices. Suppose we have chosen the individual whose edge is to be
rewired. We now make a random walk on the Individual graph and arrive at an individual
vertex which is connected to what is now taken to be the arrival artifact for the rewiring
process. Even a short walk of this type produces good approximations to preferential
attachment processes [36, 41, 42, 43]. The preferential attachment events in our simple
model are equivalent to doing a random walk on an Individual graph which is a complete
graph with tadpoles.

6.2 Relationship to models in the literature

The rewiring of unipartite networks has been studied in its own right [1, 2, 4, 3, 5, 6,
7, 10, 11] but the all of these examples contain our bipartite graph. A projection of
our bipartite graph gives an unipartite graph, made from just the artifact vertices. One
way to achieve this example is to pair the individual vertices (say individuals numbered
(2i − 1) with (2i)) and to consider the two edges of these individual vertices as the two
ends (the stubs) of a single edge in the new undirected graph. Thus the process our
simple model illustrated in Fig. 1 represents a rewiring process in some undirected graph
as shown in Fig. 10. In this way, or by considering the problem directly, we see that the
mean field equations (1) are the same and we need only alter the normalisations in the
probabilities (4).

Figure 10: How the rewiring of the bipartite graph represents the rewiring of an undirected
graph. In this example individual vertices numbers (2i) and (2i − 1) are paired in the
bipartite graph to give the edge labelled (2i − 1, 2i) in the equivalent undirected graph.
The rewiring of the undirected graph depicted in this figure is is equivalent to that shown
for the bipartite graph rewiring of Fig. 1. This is the projection used by Molloy and
Reed [39].

Note that the degree distribution of the projected undirected graph at any one time is
independent of how we pair off individual vertices in the bipartite graph. Thus the degree
distributions of many different unipartite networks is represented by the same bipartite
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graph. Indeed this is the same projection used by Molloy and Reed to construct general
random graphs, that is graphs of a given degree distribution but otherwise arbitrary [39].

There are several expressions for global properties of large generalised random graphs
which depend on the ratio of the second and first moments through a parameter z [39,
44, 45, 46]

z(t) :=
〈k2〉

〈k〉
− 1 = (E − 1)F2(t) (60)

Thus for large general random graphs being rewired using any mixture of random vertex
and preferential attachment, we can give these global properties at any time. For instance
the mean inter vertex distance ℓ scales as (ln(N)/ ln(z(t) + const) so we see from (52)
that for large E we only avoid ℓ scaling as ln(N) if prE ∼ O(1).

Similarly a GCC (giant connected component) is present in this unipartite projection
when z > 1. We see that this will always appear if 〈k〉 > 1 or, if 〈k〉 < 1, it appears
only if pr < (2 − 〈k〉)−1. Suppose we start from the most disconnected example where
F2(t = 0) = 0 (so 〈k〉 ≤ 1). Using (52) we can find the time at which the GCC
first appears. If prE ∼ O(1), which includes the condensate region, we find that the
GCC appears at t = E/2. This is much quicker than the approach to the equilibrium
configuration which happens on a time scale τ2 ∼ O(E2). If pr is raised from O(E−1)
towards the critical value for the existence of a GCC, (2 − 〈k〉)−1, the time at which the
GCC appears increases, reaching infinity at the critical value of pr.

A different example of this projection is when our initial bipartite graph has each
artifact connected to m individuals (n(k) = Nδkm). The unipartite graph projection
is then a randomised version of the graphs used by Watts and Strogatz [1]. From this
initial condition and setting pr = 1 we therefore have the exact solution for the degree
distribution at any time in the Watts and Strogatz model. The pairwise correlation of
individual vertices is only required if we want to know about other aspects of the Watts
and Strogatz networks, such as the network distance and clustering coefficients which were
the focus of [1]. We can though calculate such quantities at any time in the randomised
graph which provides a useful comparison.

It is straightforward to adapt this projection so that we get a directed graph. For
instance the direction of an edge in the projected unipartite graph could flow from the
artifact connected to individual (2i − 1) to the artifact connected to individual (2i). A
simple modification of the master equation (1) is needed to keep track of the in- and
out-degree if we choose to make these edges directional.

One can also think of other types of projection onto unipartite graphs. Suppose
one fuses each individual vertex i with an artifact vertex which is not necessarily the
artifact connected to that individual by the individual’s edge in the bipartite graph.
The individual-artifact edges of the bipartite graph now represent edges between the
fused vertices of this projected unipartite graph. There is a natural direction associated
to these unipartite edges coming from the individual-artifact direction of the bipartite
graph, and this can be maintained or ignored as needed. A simple example of this
projection is where the numbers of individual and artifact vertices are the same and we
fuse each artifact vertex with one individual vertex. If we let the edges of the bipartite
graph represent edges from the individual to an artifact in the unipartite graph, then the
unipartite graph vertices have out-degree equal to one and this is one way of representing
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the degree distribution of the graphs of [5] and as illustrated in Fig. 11. Our master
equation (1) is then the exact mean field description for the in-degree in this case.

Figure 11: Another type of projection from our bipartite to a unipartite network. Each
individual vertex is fused with one of the N artifact vertices to produce a unipartite graph
with N vertices. The edges of the unipartite graph are naturally directional coming from
the vertex associated with the old individual vertex of the bipartite graph and going to
the old artifact vertex. In the simplest case we have the same number of artifacts E as
individuals N and then we fuse artifact A with individual 1 to give a unipartite vertex
labelled A1 etc. This produces a network of the type used in [5]. The figure shown here
is this simple projection of the bipartite graph and rewiring event of Fig. 1.

We will now turn to problems where there is no explicit reference to a network in the
standard exposition but which can still be related to our model. In such cases there is an
implicit graph in the problem which one may define to make contact with our realisation,
but this network may not be relevant in these other studies.

The work on cultural transmission [20, 21, 22, 23, 24, 25] is usually developed without
reference to any network. The names for our vertices come from this case. In this
context individuals are deemed to be choosing some artifact of no particular value (pottery
designs, pedigree dog breeds or baby names for example) by copying the choice of another
individual — preferential attachment. Sometimes though one can expect innovations to
be made when a completely new artifact is introduced. This translates to a random
attachment event in the N → ∞ limit. While this work does not generally use a network
picture, it does translate directly into our network model (e.g. see [21]). Here the edges
in our network realisation represents the artifacts chosen by each individual. In cultural
transmission problems, samples of these distributions are often available, from records of
births, pedigree dog registrations, or reports from archaeological excavations10.

It is relatively easy to see how the same model may be used for family names rather
than the personal names of [22]. In this case the partners who change their family name
are represented by the individual vertices, the family names are the artifact vertices and
the edges represent the partners who keep their family name. This is then the constant
population limit of the models in [26].

This family name example shows that this model may be linked to inheritance pro-
cesses. As noted elsewhere [21, 22, 23, 24] the oldest examples come from a simple model
for the diversity of genes in a constant population due to Kimura and Crow [27, 28]. In

10Sometimes these samples are medium term time averages of the degree distribution
∫

p(k, t) and
such distributions may take a different form, a problem addressed in [22, 23].
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the case of a haploid cell (viruses, bacteria and blue-green algae provide examples) the ar-
tifacts are alleles of a single gene carried by each individual. The preferential attachment
events correspond to inheritance of genes. This produces a drift towards homogeneity
and, if unchecked, a condensation or fixation in the frequency of alleles in the population.
The random attachment process is mutation in this context.

In general a fitness is assigned to each gene representing the chance of survival and
the successful birth rate associated with having that gene. There may also be different
mutation rates associated with each gene. However in the simplest models such factors are
ignored. Translating the haploid gene model for a constant population into the language
of our network rewiring model is then simple. The organisms are the individuals and
we consider one gene carried by each individual. Each different allele of this gene is a
distinct artifact vertex and so each edge records the allele carried by an individual. The
rewiring example of Fig. 1 is translated into a haploid model as shown in Fig. 12.

Figure 12: Interpretation of the the example shown in Fig. 1 as a haploid gene inheritance
and mutation model. Each individual carries one copy of a gene and each different version
of the gene, an allele, is represented by an artifact vertex. The edges indicate the allele
present in each individual. Note this also serves as a model of family names for a constant
population if one partner inherits the family name of the other partner. In this case the
alleles (artifacts) are the family names, the edges are the males and the genes (individuals)
are the females.

In a diploid cell there are two copies of a gene and most cells of most higher organisms
are of this type. Ignoring fitness etc. we can see that we can represent the allele frequencies
of one gene in a constant population of diploid cells with the usual rewiring model as
shown in Fig. 13.

There is also a close relationship between our network model and various models of
statistical physics, a connection already noted in some places [18, 10]. In the original
Urn model of the Ehrenfests [47] one has E balls placed in two Urns. At random times
given by a Poisson process, a ball chosen at random is moved from one urn to another.
This corresponds to a continuous time version of our model with the artifacts being the
Urns so N = 2 and the individuals represent the balls. Choosing pr = 1 in our model
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Figure 13: Interpretation of our model as a diploid gene inheritance and mutation model.
Organism (3’,4’) dies and is replaced by (3,4) whose parents are the organisms (1,2) and
(5,6). From the (1,2) parent it inherits copy number 2 of the gene which is allele A.
However the gene it inherits from the (5,6) parent mutates to allele H.

reproduces the behaviour of the original Urn model.
There is one subtlety in that in the original Urn model the ball is never put back into

the Urn it was drawn from. These events are allowed in our model and are precisely the
ones which require the factors of (1 − Π) in our master equation (1) as they leave the
configuration unchanged. The difference between the original Urn model and our model
for N = 2, pr = 1 and continuous time is just a matter of a factor of two in the rates.

However generic Urn models are often encountered in some obvious variations of the
Ehrenfest version, in particular with N urns and with different forms for the rate at which
balls are moved and where they are then placed [8, 9, 10, 11]. Some of these variations of
the original Urn model are equivalent to other models such as the Backgammon or Balls-
In-Box models used for glasses [13, 14], simplicial gravity [15] and wealth distributions
[16]. The zero range processes [17, 18, 19] can also be interpreted as an Urn models, with
the ‘misanthrope’ process on a fully connected geometry being closest to our basic model.

Using the terminology of the Urn model review [9], the ‘geometry’ of the Urn model
refers to which Urns are connected — an artifact network in our model as discussed in
Section 6.1. The simplest ‘mean-field’ geometry, i.e. a complete graph for the artifact
network, is what we assume in our simple model. On the other hand the basic zero-range
process models [17, 18] use a one-dimensional ring. If we allow processes where the ball
is placed back into the urn it came from, then the rate at which a ball moves is given by
u(d, a) per ball where d is the departure urn and a the arrival urn. Usually the rates used
factorise into two terms, one depending only on the number of balls in the departure urn
kd (number of edges so artifact vertex degree) and the other on the number of balls in
the arrival urn ka. In our terminology u(d, a) = ΠR(kd)ΠA(ka). Then the three rules for
ball selection discussed in [8, 9] correspond to our generalisation (57) as follows: Rule A
(random ball to random urn, Ehrenfest class) is our qp = 1, pr = 1; Rule B (random urn
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to random urn, Monkey class) is our qa = 1, pr = 1; Rule C (random ball to random ball)
is our qa = 1, pp = 1.

However we stress that to include processes where balls are returned to the urn they
were drawn from, the master equation has to contain the factors (1−Π) while such terms
are normally absent in the evolution equations of literature on Urn and related models
e.g. in [8, 9, 10]. If we were to exclude such events then our transition rates u(d, a) will not
factorise into departure and arrival dependent terms11. For instance in our language the
factor normally associated with the arrival vertex, our attachment probabilities ΠA, will
have to depend on the departure urn as well as on the properties of the arrival urn, and
for us would take the form (59) while the literature usually uses simple factorisable forms
e.g. [8, 9, 10, 11]. As we noted in Section 6.1 this will be important when a significant
fraction of balls are in any one box, as is the case with a condensate.

There is a way round this problem and that is to work with our solution in continuous
time (55) and then to rescale our time t back into the time turn of an Urn model where
one can not put the ball back into the urn it was drawn from. From the number of these
events allowed in our model but excluded from an Urn model we have for infinitesimal
time steps

dt− dturn =

[

pr

N
+
pp〈k

2〉

E〈k〉

]

dt (61)

where the second moment 〈k2〉 is easily derived from F2(t) of (48).
Finally we note that many models in sociophysics may be cast as generalisations of our

bipartite rewiring model. If we add an Individual graph then for a copying (preferential
attachment) event, an individual copies the artifact choice made by one of its neighbours
in the Individual graph. When pp = 1 and N = 2 this is the basic Voter model [29],
as used for instance for language evolution [31]. Our results are equivalent to having an
Individual graph which is complete with tadpoles12. Our time scale is (τ2/E) = E/2
which agrees with the O(E) result quoted in [30]. However our result shows the effect on
both the consensus and on the time scale to reach equilibrium of adding some randomness
to such Voter models.

Our results may also be useful in other sociophysics models. In one variation of the
Minority Game [32] individuals choose the ‘best’ strategy known to them, comparing
their own against all those used by their neighbours as defined by an Individual graph.
Each artifact vertex in our model would then represent a different strategy. In this case
what is best is continually changing as generally the more popular one strategy becomes
the less successful it will be. Thus statistically, it is likely that the resulting instantaneous
artifact degree distribution n(k, t) will be indistinguishable from that obtained by just
copying the artifact of a random neighbour which as a simple random walk is likely to
lead to effective preferential attachment. It is no surprise then that the long time results
for the popularity of strategies in [32] follows a simple inverse power law with a large
degree cutoff, the form found in (35).

11One exception is for a two Urn model as then the number of balls in the arrival urn may always be
written in terms of those in the departure Urn and vice versa. This means typical expressions for rates
are always factorisable.

12If this is performed on just a complete graph then this is an N = 2 Urn model with rule C of [8, 9]
performed on mean field Urn geometry.
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7 Summary and Conclusions

The starting point of our work is the observation that the usual mean field master equa-
tions seen for network evolution are not suitable for general rewiring problems. One
needs to add the factors of (1 − Π) seen in (1) if the degree distribution is to behave
properly at the maximum degree [37]. With these terms and the simplest case of linear
attachment/removal probabilities the exact solution for the degree distribution at any

time can be found for arbitrary values of the parameters, here expressed in terms of the
generating function G(z, t) of (5), (8) and (11). This is better than can be done for simple
growing networks where the exact equilibrium solution is known for simple attachment
probabilities but the finite size (finite time) system corrections are only known asymp-
totically (e.g. see [33, 34, 36]). Previous results for equivalent models give results that
are only approximations, often for infinitely large systems in equilibrium though all are
consistent with the results derived here13. We have also compared our analytic results
against numerical simulation in several ways and seen that agreement is excellent. We
know of no other network model that has the exact time dependent solution for arbitrary
parameters range and suggest that this model may prove to be as useful a model as the
Erdős-Réyni random graph has been.

In particular the equilibrium degree distribution of [37] is found as the long time
solution. It has two characteristic regimes: if when all edges have been rewired once (on
average) at least one rewiring was done randomly then a simple inverse power law with
exponential cutoff is obtained, otherwise we have a regime with a condensate.

We have confirmed the slow approach to equilibrium and the conjectured form for the
second eigenvalue λ1 of [38]. However here we have shown that the long time evolution is
governed not by the second largest eigenvalue but the third largest, λ2 = 1 − (2pr/E) −
(2pp/E

2) with associated time scale τ2 = −1/ ln(λ2).
We have also noted that this simple bipartite graph rewiring model captures the degree

distribution of many other networks, with that of the original Watts and Strogatz model
[1] as one limit of our model. In particular we have the exact degree distribution at any
time and any parameter value for the rewiring of a general random graph. From this
we can obtain various global properties analytically as a function of time using various
known formulae [39, 44, 45, 46]. However many of the alternative realisations require
no explicit network as in the link to Urn/Backgammon/Balls-in-Boxes models and zero
range processes [10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

The model also has a wide range of practical applications. As most practical systems
can not grow indefinitely, this fixed sized rewiring model will often be more appropriate
than a growing network model. The Urn-type models have been applied to glasses [13],
simplicical gravity [15] and wealth distributions [16]. Models for social science in both
modern and archaeological contexts [20, 21, 22, 24, 23] can be be cast as our model.
The applications in these papers include baby name frequencies [22], pedigree dog breed
popularity [23] and pottery styles [20, 21]. Sociophysics models may also be related to our
work. The Voter model [29, 30], as applied to language evolution [31], and the choice of
strategy in a Minority game variant [32], may be linked to our bipartite graph approach.

13The literature does however tackle other more complicated variations of the model not considered
here.
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Finally basic models of population genetics [27, 28] and more generally any process where
inheritance is important, such as with Family names [26], can be encoded by our network
rewiring.

Many of the related examples in the literature also study cases beyond our simple
model, for example non-linear attachment probabilities ΠA ∝ kβ for β ∈ R, attachment
probabilities whose scale varies with the artifact (fitness), pure Artifact or pure Individual
graphs, and growing systems (dE/dt) 6= 0. These can often be captured by extensions to
our basic model but the downside of this sophistication is that the mean field equations
are then only approximations whose exact algebraic solution is probably unobtainable in
any case. Rather the literature usually works in a large network long time approximation,
E ≫ 1, often in a particular part of parameter space such as 1 ≫ pr ≫ E−1 or pr = 0.
We though have exploited the simplicity of our model in order to obtain exact solutions
for any time or parameter value.

At worst this simple bipartite model provides a useful null model against which to
test other hypotheses [25]. However we have also argued in Section 6.1 why copying may
be a more widespread method than the obvious cases involving inheritance mechanisms.

Finally we note the scaling properties of the model. In many practical examples the
artifacts are really categories imposed by investigators on a collection of objects. In
almost all cases, each object could be individually identified if one wishes. Indeed the
objects may be being chosen by individuals based on characteristics completely different
from those recorded by the researcher. No pedigree dog [23] is genetically pure, a personal
[22] or family name [26] may come in several close variations, and who assigns a particular
style to an archaeological pottery find [20, 21]?

Consider an exemplary small study [48] where the shoes of around two hundred male
physics students leaving a lecture were photographed. Various researchers categorised
them in completely different ways giving different degree distributions from the same
data. For instance one could categorise each shoe by colour, material and fastening
method. Still what constitutes say a ‘blue’ shoe may be a context dependent matter
of physical and social perception so researchers and wearers may not even agree how to
classify a given shoe under the one scheme.

So if such artifact popularity distributions are to have much meaning they ought to be
largely independent of this categorisation. Thus consider pairing the artifacts at random
and calculating the degree distribution for these pairs, n2(k), even though the model
continues to make its rewiring selections based on the original single artifact vertices.
That is at each event we choose to make a preferential (copying, inheritance) attachment
or a random (innovation, mutation) attachment to the artifact pairs with exactly the same
probability pp and pr. Given our linear attachment/removal probabilities the effective
probability for attaching to a given artifact pair is just the sum of the degrees of its
constituent artifacts, i.e. it is still proportional to the degree of the artifact pair. On the
other hand the probability we attach to a given artifact chosen at random is halved but
only because the number of artifact pairs N2 is just half the original number of artifacts,
N → N2 = N/2. With the number of edges E unchanged, changing N to N2 is the
only change we need to make in our equations. Vitally, the form for the attachment and
removal probabilities remains the same and thus the form of the solutions is unchanged.
We will get the same qualitative behaviour, a power law with an exponential cutoff. In
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such cases the cutoff ζ (28) remains unchanged and only the slope γ (26) changes in
comparing n(k) to the pair degree distribution n2(k). However the slope is invariably
indistinguishable from one in a practical data set or it will be unmeasurable with a small
cutoff ζ . Thus for a linear attachment plus random attachment model, the distribution
of artifact choice is independent of how artifacts are classified for all practical purposes.
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